Покатавшись несколько месяцев с индикатором расхода топлива, описанным мной ранее в цикле из трех статей (раз, два, три), я решился окончательно интегрировать его в панель приборов, тем более что все равно собирался вскрывать ее для установки цветных светодиодов для подсветки, вместо стандартных лампочек накаливания. О светодиодах и панели я расскажу в другой раз, а сейчас поделюсь разработанной мной новой конструкцией индикатора.
В конструкцию прибора были внесены некоторые изменения, касающиеся стабилизации питания и отображения результатов измерений.
Поговорим обо всем по порядку. Итак – начну с питания. Несмотря на то, что схема понижения и стабилизации напряжения питания микроконтроллера, примененная в первой версии устройства работала без нареканий, ее решено было переделать. По большей части причиной послужило то, что в моем распоряжении появилась горсть low-drop регуляторов напряжения на 5 вольт – TLE4275.
Регуляторы эти хороши тем, что имеют специальный выход, подключаемый к ноге reset микроконтроллера. Таким образом, регулятор напряжения включает микроконтроллер только тогда, когда питающее напряжение устаканится. В случае повторных скачков или просадки напряжения, регулятор самостоятельно перезагрузит микроконтроллер. Величина временной задержки, между моментом, когда питающее напряжение устаканивается, и моментом, когда регулятор включает микроконтроллер, устанавливается емкостью одного из конденсаторов в обвязке регулятора. Такая схема позволяет гарантировано избежать фатальных зависаний микроконтроллера при проблемах с питающим напряжением.
Лирическое отступление: при проблемном питании, как например, в бортовой сети авто, не стоит надеяться на вотч-дог в микроконтроллере. По своему опыту могу однозначно сказать, что при скачках напряжения зависает он не хуже всего остального оборудования на чипе. Следует отдавать себе отчет, что встроенный вотч-дог предназначен главным образом для борьбы с программными зависонами – например, если программа наглухо застрянет в каком-то непредусмотренном цикле и т.п. С аппаратными проблемами встроенный вотч-дог не всегда может бороться.
Кроме того, данный регулятор питания выпускается в удобных корпусах, позволяющих расположить его горизонтально на плате, а также сертифицирован для использования в автомобильной технике.
Второе изменение в конструкции моего прибора коснулось отображения информации. Во время использования первой версии устройства, я заметил, что при особенно интенсивном разгоне, потребление топлива становится настолько большим, что если принять его за 100%, потребление во время не особо напористого движения не превышает 20-40%. Таким образом, на приборе редко загоралось больше 4-5 делений из 10.
Для борьбы с этим явлением в устройство было добавлено две кнопки, позволяющие задать порог отображения расхода. Поясню на примере. Как вы помните, устройство самообучающееся – каждый раз, обнаружив новое максимальное потребление топлива за единицу времени, система запоминает его, и впоследствии ведет отображение относительно этого нового максимального значения. Примем его за 100%. В новой версии устройства, я могу принудительно заставить шкалу заполниться полностью при, к примеру, 70% от максимума. Таким образом, при потреблении 35% от максимума, будет гореть половина шкалы, при 70% и выше – вся шкала. Меня такое положение дел вполне устроило – устройство не предназначено для точного учета расхода (хотя и этот функционал может быть совсем просто реализован – нужно лишь подключиться к датчику скорости и дописать несколько строк кода), а для эффектного визуального отображения информации.
Кроме того, я внес в схему возможность вывода цифровой процентной информации на трехзначный семи-сегментный дисплей LB203YB – я не использовал его в своем авто, а лишь припаял дисплей на саму плату, но возможно, кому-то захочется посадить его на провода и вывести на панель приборов.
Для экономии ног микроконтроллера, дисплей подключен через доступные сдвиговые регистры 74HC164 – соответственно написаны функции для динамичного вывода информации. Этот геморрой занял больше всего времени при написании софта.
В схеме также присутствуют кнопки перезагрузки и сброса настроек устройства на первоначальные значения.
Таким образом, всего есть 4 кнопки – они разведены на плате, а также предусмотрена возможность подключения внешних кнопок, через разъемы на плате.
На плате предусмотрен разъем для внутрисхемного программирования чипа – ISP. Да кстати, контроллер поменялся на Atmel Atmega8 в стандартном DIP корпусе.
Так уж получилось, что совершенно случайно я просверлил в дешборде 11 дырок для светодиодов, вместо 10. В итоге в системе появился 11тый светодиод, который постоянно неспешно мигает, сигнализируя о текущем статусе работы устройства. Например, если он мигает раз в 5 секунд, то устройство находится в штатном режиме работы. Если мигает раз в секунду – то устройство обнаружило новый максимальный расход, но еще не записало его в постоянную память EEPROM (запись произойдет в течение минуты, при этом во время записи светодиод загорится постоянно на несколько секунд). Также, светодиод мигнет пять раз и останется гореть постоянно, при входе в режим настройки отображения информации.
Для входа в режим настройки достаточно несколько секунд подержать нажатыми кнопки SW3 и SW4. После того как сигнальный светодиод отмигает свои пять раз, на цифровом дисплее отобразится процент порога отображения расхода, как я и объяснял раньше. Тот же порог отобразится и на шкале, но с разрешением в 10% – большего от простой шкалы добиться невозможно. Порог можно двигать, нажимая те же кнопки SW3 и SW4. По окончанию процесса настройки нажмите кнопки SW3 и SW4 на несколько секунд снова.
Для сброса максимального значения расхода подержите нажатой кнопку SW2 – по окончании процесса сброса, сигнальный светодиод мигнет десять раз, после чего система начнет обучаться с нуля заново.
Еще одно изменение в схеме коснулось подключения к форсунке – теперь оно осуществляется через оптрон (я использовал 4N37). Это гарантирует отсутствие фатальных помех по сигнальной линии.
В остальном схема осталась без изменений – более конкретные объяснения есть в упомянутых мной статьях о первой версии устройства.
Стоит упомянуть, что на контроллере осталось четыре неиспользованных ноги – возможно, кому-то захочется расширить функционал устройства с их помощью.