Краткая история ОЗУ  P


Оперативная память является одним из ключевых устройств в вычислительной технике. Процессор имеет прямой доступ к оперативной памяти и временно хранит в ней данные и команды. ОЗУ, как правило, обладает много меньшим объемом, чем ПЗУ, но при этом, работает в десятки раз быстрее.

Сейчас, покупая в магазине очередную планку памяти, мы не задумываемся, с чего началась история современных ОЗУ. А история, эта, на мой взгляд, довольно интересна.

Электронные компьютеры, занимавшие по тем временам огромные площади, и потребляющие сотни тысяч ватт энергии, появились во второй половине сороковых годов 20го столетия. Поначалу они использовали так называемые ring counter’ы (это такой круговой сдвиговый регистр), реализованные на электронных лампах – двойных триодах. Это был неэкономичный, громоздкий и медленный тип ОЗУ.

В начале 50х годов ему на замену пришла ОЗУ на магнитных сердечниках, просуществовавшая в активном использовании до середины 70х. Вот, например модуль памяти на 2кБ:

Core memory module

Ничего не понятно?

Ну вот, покрупнее:

Core Memory

Close
Core Memory

(кликабельно)

А вот еще покрупнее:

Core memory

 

Core memory

Выглядит просто адски. Такая память хранит информацию в виде направления намагниченности небольших кольцевидных ферритовых сердечников. Ферритовые кольца расставлялись в прямоугольную матрицу и через каждое кольцо проходило четыре провода для считывания и записи информации. И вот как это делалось: направление намагниченности одного ферритового кольца позволяет хранить один бит информации. Через кольцо проходят четыре провода: два провода возбуждения X и Y и провод запрета S под углом 45° и провод считывания Z под углом 90°. Для считывания значения бита, на провода возбуждения подаётся импульс тока таким образом, что сумма токов через отверстие сердечника приводит к тому, что намагниченность кольца принимает определенное направление независимо от того, какое направление она имело до этого. Значение бита можно определить, измерив ток на проводе считывания: если намагниченность сердечника изменилась, то в проводе считывания возникает индукционный ток.

Забавно то, что считывание разрушает сохранённую информацию. Потому после считывания бита, его необходимо повторно записать.

Для записи, на провода возбуждения подаётся импульс тока в обратном направлении, и намагниченность сердечника меняет направление (относительно того, которое она имеет после считывания). Однако если при этом в другом направлении подаётся ток на провод запрета, то суммы токов через кольцо недостаточно, чтобы изменить намагниченность сердечника, и она остаётся такой же, как после считывания.

Core memory

Матрица памяти состоит из N² кольцеобразных сердечников нанизанных на пересечения перпендикулярных проводов возбуждения X1…XN и Y1…YN. Через все сердечники проплетается один провод считывания и один провод запрета. Таким образом, матрица позволяет считывать или записывать биты только последовательно.

Силу тока в проводах возбуждения и материал сердечника подбирают так, чтобы тока через один провод не хватило бы для изменения намагниченности сердечника. Это необходимо поскольку на один провод возбуждения нанизано несколько десятков сердечников, а менять направление намагниченности нужно только в одном из них.

Нашел вот в нете фотку компа, использовавшего такой вид памяти:

Core Memory Computer

Следует заметить, что по разным причинам, такой вид памяти использовался на космических кораблях (тот-же Шаттл, к примеру) до начала 90х, а даже используется по сей день на старых АЭС. Основная причина — в отличие от полупроводников, магнитные сердечники не боятся радиации и электро-магнитных импульсов (ну да, тех самых, что возникают при ядерном взрыве).

Память на ферритовых сердечниках по английски называется megnetic core memory. Таким образом в компьютерном термине core dump остались следы эпохи повсеместного распространения ферритовой памяти. Для справки: core dump это файл в современных Unix и Linux системах, в который операционная система сохраняет содержимое рабочей памяти какого либо процесса.

 

В 1968 году маленькая группа специалистов, отколовшаяся от Motorola, создала компанию Intel. В 1969 году новоиспеченная компания выпустила высокоскоростной 64-битный полупроводниковый чип ОЗУ, модель 3101.

Полупроводники на тот момент уже не являлись чем-то новым, но Intel использовала диод Шоттки и биполярные технологии в своем чипе, что позволило резко поднять скорость работы памяти.

Intel 3101

Позднее в том-де 1969, Intel представила 256-битный чип памяти, модель 1101 – первый в мире чип памяти МОП (англ. MOS-  Metal Oxide Semiconductor).

Intel 1101

Несмотря на то, что 1101 был сложным чипом, имел малый объем памяти и потому не мог эффективно конкурировать с памятью на ферритовых сердечниках, его МОП основа нашла применение в сдвиговых регистрах.

С 1970 по 1971 Intel активно работала над чипами 1102 и 1103 – две чипа с 1Кб динамической ОЗУ, использующей 3 транзистора на одну ячейку памяти. 1102 так и не вышел на рынок. Зато представление 1103 широкой публике было поворотным моментом в истории ОЗУ: наконец большой объем данных мог быть эффективно сохранен на одном чипе. 1103 стал стремительно замещать старые модули памяти на ферритовых сердечниках и вскоре стал стандартом.

Intel 1103

Конечно, по сегодняшним стандартам 1103 очень примитивный чип. Он медленный, сложный в производстве и эксплуатации. Но он доказал, что полупроводниковая память не только жизнеспособна, но и намного более эффективна предшественников.

Далее ОЗУ продолжала развиваться на полупроводниковых технологиях, постоянно удваивая скорость и объем, и так до наших дней. Первая эра ОЗУ длилась около 10 лет, вторая около 20. Сейчас мы уже перешли 30 летний рубеж использования полупроводников. Интересно, что дальше….?

 

ЗЫ: кстати, сейчас древние чипы Intel стали предметами коллекционирования. Я видел недавно на eBay продались 3 чипа 1103 за 115 долларов US of A….



Один комментарий на “Краткая история ОЗУ”
Art Дата записи: 25.01.2010 в 22:19

Это жесть какая то!

Ферритовая...

Комментарии:

Пожалуйста, авторизируйтесь для комментирования.

Облако меток:

  • самопал обзор поржать модернизация доработка компьютер Almera измерения ремонт гараж водянка паяльники и пайка двигатель N15 кулер прошивка Nissan Софт интрумент блок питания микропроцессоры технологии тюнинг смартфон unlock Windows история чистка бред интрукция помпа GA16DE автоматика внедорожник GPS браузер печатные платы мышка программирование процессор

  • Подняться вверх